
Merging of non–symmetric Burgers vortices

Keith Higgins

Department of Mechanical and Manufacturing Engineering, The University of
Melbourne

khigg@mame.mu.oz.au

M. S. Chong

chong@mame.mu.oz.au

Andrew Ooi

aooi@unimelb.edu.au

The Burgers vortex is a well–known equilibrium solution to the Navier–Stokes
equations in which viscous diffusion is balanced by vorticity intensification due to the
stretching strain field. The Burgers vortex has been used to model various features
of turbulence, and recent numerical simulations of turbulence have renewed interest
in the properties of Burgers vortices.

Robinson & Saffman [4] calculated numerically steady solutions for a single vor-
tex in a non-symmetric axial strain field for small Reynolds numbers Re. They
showed how Re and the strain ratio λ (see below for definition) affected the elliptic-
ity and orientation of the vortex. Buntine & Pullin [1] computed the time dependent
merger of two vortices in an axisymmetric strain field for a range of Reynolds num-
bers 0.1 < Re < 1280. They showed that the interaction of the vortices produced
spiral structures and eventual relaxation to an axisymmetric Burgers vortex.

Moffatt, Kida & Ohkitani [2] developed a large Reynolds number asymptotic
theory of stretched vortices in a non-symmetric straining field. Prochazka & Pullin
[3] extended on the work of [2] and [4], and developed quasi–steady non–symmetric
solutions for high Reynolds number and large biaxial strain. They also developed
an asymptotic form for the vorticity enclosed within a cat’s–eye region of nearly
two-dimensional flow.

In this paper, we present the numerical study of the interaction between Burgers
vortices in a non-symmetric background straining field, (αx, βy, γz), where α+ β +
γ = 0. We consider cases in which one principal extensional strain is aligned with
the vorticity, and the value of the strain ratio, λ = (α− β)/(α + β) > 0.

The hybrid spectral finite–difference method of Buntine & Pullin [1] is used to
solve the Navier–Stokes equations on an infinite domain. A vortex Reynolds number
Re = Γ/2πν is defined, where Γ is the total circulation and ν the kinematic viscosity.
All quantities are non-dimensionalised using a length scale of δ = (2ν/γ)1/2 and a
time scale of τ = 2/γ.

Initially, two Burgers vortices were placed symmetrically about the origin, sep-
arated by a distance of r0. Figure 1 shows a representative simulation for which
Re = 10000, λ = 150 and r0 = 5. Although the strain field is extremely biaxial, the
vortices rotate about each other, while the distance between their cores oscillates.
Perhaps the most striking feature of the vorticity contour plots is the development
of ‘inner’ and ‘outer’ spiral arm structures. The vorticity in the spiral arms becomes
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more concentrated and the ‘outer’ spiral arms develop into two ‘tails’ of vorticity
that are convected away from the vortex.

We also plot contours of the rate of viscous dissipation due to the vortices, D(r, θ)
for the merging events (Moffatt, Kida & Ohkitani [2]). Initially, the regions of high
rate of dissipation do not overlap with the regions of high enstrophy. However, at
later times, the dissipation becomes concentrated in the regions of high vorticity
gradient inside the spiral arms.

Many questions remain unanswered about the behaviour of stretched vortices
embedded in biaxial strain fields. Areas for future investigation include: the condi-
tions on the initial core separation under which the vortices merge; the effect of the
merging process on the relaxation towards the asymptotic and quasi–steady solu-
tions of Prochazka & Pullin [3]; and the effect of more general velocity perturbations
on the merging event, such as a time dependent strain.
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Figure 1: (a)–(c) Contours of vorticity, (d)–(f) contours of rate of viscous dissipation,
D(r, θ). Re = 10000, λ = 150.
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