A study of singularity formation in a class of solutions of the Euler & ideal MHD equations

J. D. Gibbon

Imperial College of Science, Technology and Medicine j.d.gibbon@ic.ac.uk

This work (Ohkitani and Gibbon [2]) concerns a class of solutions of the threedimensional incompressible Euler equations of the type

 $U(x, y, z, t) = \{u_1(x, y, t), u_2(x, y, t), z\gamma(x, y, t) + W(x, y, t)\}$

which evolve on a tubular domain, infinite in the z-direction with periodic crosssection $\mathcal{A} = [0, L]^2$. It is based on a decomposition of the three-dimensional Navier-Stokes and Euler equations, found by Gibbon *et al* [1], into two-dimensional equations for γ , W and the third vorticity component $\omega = u_{2,x} - u_{1,y}$. A numerical study of these indicates the existence of a finite time singularity in γ and other variables. This is an infinite energy blow-up on an infinite domain and therefore belongs to a different category than finite energy Euler singularities. The three dimensional vortices that appear within the tube just prior to blow up have a flower-like structure, with petals of high vorticity interspersing hollow regions of weak vorticity. Constantin [3] has subsequently proved analytically that this singularity exists and that it is two-sided; that is, $\gamma \to \pm \infty$ in different parts of \mathcal{A} .

For three-dimensional ideal MHD (Gibbon and Ohkitani [4]) using Elsasser variables $V^{\pm} = U \pm B$ we investigate a similar class of solutions: $V^{\pm} = (v^{\pm}, v_3^{\pm})$ and $v^{\pm} = v^{\pm}(x, y, t)$ with $v_3^{\pm}(x, y, z, t) = z\gamma^{\pm}(x, y, t) + \beta^{\pm}(x, y, t)$. Two-dimensional PDEs for γ^{\pm} , v^{\pm} and β^{\pm} are obtained, valid in the tubular domain \mathcal{A} . Pseudospectral computations provide evidence for a finite time blow-up. This apparent blow-up is an infinite energy process that gives rise to certain subtleties; while all the variables appear to blow-up simultaneously, the two-dimensional part of the magnetic field $\mathbf{b} = \frac{1}{2}(\mathbf{v}^+ - \mathbf{v}^-)$ blows up very late. This singularity in \mathbf{b} is hard to detect numerically but supporting analytical evidence of a Lagrangian nature is provided for its existence. In three dimensions these solutions correspond to magnetic vortices developing along the axis of the tube that open prior to breakdown.

References

- Gibbon J. D., Fokas A. & C. R. Doering (1999). Dynamically stretched vortices as solutions of the Navier-Stokes equations. *Physica D* 132, 497.
- [2] Ohkitani K. & Gibbon J. D. (2000). Numerical study of singularity formation in a class of Euler and Navier-Stokes flows. *Phys. Fluids* 12, 3181–3194.
- [3] Constantin P. (2000). The Euler equations and non-local conservative Riccati equations. Internat. Res. Notices (IMRN) 9, 455.
- [4] Gibbon J. D. & Ohkitani K. (2000). Numerical study of singularity formation in solutions of the equations for incompressible MHD. *Preprint*.