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The condensation of vorticity into filamentary structures in turbulent flows has
received much attention in the last two decades. So far the detected filaments have
been found with diameters of the order of the Kolmogorov scale, η, lengths of the
order of the integral scale, `ε, and velocity difference across their cores of the order
of the large-scale velocity, see e.g. Jiménez & Wray [1].

We use two-component cross-wire velocity signals from several turbulent shear
flows in the range 250 ≤ Reλ ≤ 4600 (cylinder wake, plane and round jet, atmo-
spheric surface layer), to detect the presence of coherent vortices. The detection
algorithm assumes the vortices to be rectilinear and infinitely long, with a vorticity
distribution which is axisymmetric and Gaussian, and to be advected with a con-
stant advection velocity which is determined locally. It also assumes them to be
strong enough for any additional local strain to be negligible, but allows for their
orientation to be arbitrary. The particular hypothesis of a Gaussian distribution of
vorticity allows us to access quantities of physical interest, and to control the quality
of our measurements by comparing the (u, v)-experimental trace with the one pro-
duced by the ideal vortex which best approximates the data. The same detection
algorithm is applied to raw experimental signals and to low-pass filtered ones, thus
making it possible to probe the issue of truly inertial coherent vortices in the case
of our highest Reynolds number data. As usual the Taylor hypothesis is used to
convert time into space.

For unfiltered signals, the detected vortices have radii of the order of the Kol-
mogorov scale while, for the low-pass filtered signals, we detect coherent vortices at
all the scales. We show in figure 1a the probability density function (PDF) of the
radius, σ, obtained from the whole population of detected vortices. We stress that
no threshold on the magnitude of the signals is used to identify the vortices in our
method, contrary to most of the previous studies. This results in distributions of
vortex properties which are broader than those restricted to strong vortices (see the
comparison in figure 1a).

To address the issue of intermittency, we examine the transverse gradient of the
low-pass filtered velocity, ∂xv

<
∆xf

, while varying the scale of the filter, ∆xf , within the

inertial range. We compute the time fraction, µ(s0,∆xf ), associated with transverse
gradients above a given threshold, |∂xv<∆xf | ≥ s0 × 〈(∂xv<∆xf )

2〉1/2, and we compare

µ(s0,∆xf ) with the time fraction, µvortices(s0,∆xf ), associated with the simultane-
ous conditions of the realization of the previous threshold and of the identification
of the passage of a vortex near to the probe (thus µvortices(s0,∆xf ) ≤ µ(s0,∆xf )).
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Despite the identification of the vortices, and hence the value of µvortices(s0,∆xf ),
depend obviously on the severity of the tests used in our algorithm, the evolution
of µvortices(s0,∆xf ) through the inertial range has a physical meaning. The increase
of µ(s0,∆xf ) as ∆xf decreases in the inertial range is a signature of intermittency,
and remarkably we find that µvortices(s0,∆xf ) has the same behaviour, see figure 1b.

Therefore our study supports the idea that inertial coherent vortices do exist
and contribute to part of the inertial-range intermittency.
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us. We acknowledge the support of the European commission’s TMR programme,
contract no. FMRX-CT980175.
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Figure 1: Plane jet with Reλ ≈ 1600 and `ε/η ≈ 8700. (a) PDF of σ/η: , from
our detected vortices; , from Ref. [1], DNS of isotropic turbulence at Reλ ≈ 170.
(b) Time fractions: , µ(s0,∆xf ); , µvortices(s0,∆xf ); × , s0 = 3; ◦ , s0 = 5; 4 ,
s0 = 7.
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[1] Jiménez. J. & Wray A. A. (1998). On the characteristics of vortex filaments in
isotropic turbulence. J. Fluid Mech. 373, 255–285.

2


