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Hydrodynamic and hydromagnetic instabilities provide mechanisms for the development
of complexity in fluid flows. An instructive prototype is the kinematic dynamo problem, in
which the velocity field of an electrically-conducting fluid is prescribed and magnetic field
eigenmodes with positive growth rates are sought. Numerical simulations give compelling
evidence that in many flows exhibiting Lagrangian chaos, plus a sufficient degree of “non-
cancellation”, the growth rate remains bounded above zero in the limit of zero magnetic
diffusivity. The corresponding eigenfunctions, however, exhibit more and more complicated
spatial structure as the diffusivity goes to zero, converging (if at all) only to a distribution
defined in the sense of generalized functions. The limiting distribution may be thought of
as a singularity occupying a finite volume of space.

Other hydrodynamic and hydromagnetic instability problems have the same mathemat-
ical structure as the fast dynamo problem, and exhibit similar behavior in the limits of
vanishing viscous and magnetic diffusivity. The structures observed in the development
of complexity in real flows are expected to reflect the asymptotic structures of these sin-
gular eigenfunctions. Obtaining an analytical description of these structures is a difficult
problem, however, especially

when the base flow exhibits Lagrangian chaos.

This paper considers the situation in which the base flow is a superposition of a small
number of sinusoids with integer wavenumber components. Such flows (e.g. the ABC
flow) have been used extensively in numerical investigations of fast dynamo action. In
Fourier space the eigenvalue problem becomes a multidimensional difference equation in
which each Fourier mode is linked to a small finite number of its neighbors. Although the
problem is now discrete, when the magnitude of the wavevector becomes large

the amplitudes become slowly-varying in a WKB sense, and the difference equation can be
approximated by a hierarchy of differential equations in wavevector space. Moreover, since
the Laplacian becomes scalar multiplication in wavevector space, it is relatively straight-
foward to consider the effects of small finite diffusivity versus exactly zero diffusivity.

For zero diffusivity, the leading order equations reproduce advection and distortion of
localized wavepacket disturbances in physical space, and the first correction reproduces
stretching and twisting by the physical

strain field. The ‘source’ of the wavepackets is the low-wavevector Fourier modes of the
eigenfunction, whose amplitudes cannot be determined within the high-wavevector theory.
The eigenvalue, i.e. growth rate, also cannot be determined within the high-wavevector
theory. There is no decay of amplitude as wavevector increases, which reflects the presum-
ably singular nature of the zero-diffusivity eigenfunctions.

When the diffusivity is small and finite the leading order theory remains the same, but the
first correction contains an additional term reflecting decay of the wavepacket as it advects,
distorts, stretches, and twists. This decay regularizes the high-wavenumber behavior and
removes the singularity of the eigenfunction. The eigenvalue also receives a correction due



to small finite diffusivity. Although the leading-order eigenvalue is determined by the low-
wavevector modes (and is inaccessible by the present technique), the diffusive correction is
determined by the high-wavenumber modes and can be calculated within the asymptotic
theory.

Thus the asymptotic theory confirms and supports the picture that has emerged from nu-
merical simulations at moderately small diffusivities, and indicates that the same behavior
is likely to continue in regimes beyond the capabilities of numerical computation.


