A high-order analog of the helicity number for a pair of divergent-free vector field

Peter Akhmet'ev _{Moscow}

Abstract: Let B, \tilde{B} be a pair of divergent free vector fields in \Re^3 with a compact support. We constructs a high-order analog $M(B, \tilde{B})$ of the Gauss helicity number (order 1) $H(B, \tilde{B}) = \int A\tilde{B}d\Re^3$, curl(A) = B. The number M is an invariant of volume preserved diffeomorphism with a compact support. It is presented by the following integral expression. For arbitrary 4 points $x_1, x_2, \tilde{x}_1, \tilde{x}_2$ we construct a polylinear function $m(B(x_1), B(x_2), \tilde{B}(\tilde{x}_1), \tilde{B}(\tilde{x}_2))$, invariant under a permutation of the points in each pair. The invariant M is the mean value of m over arbitrary configuration of points.

To clarify the geometrical meaning of the invariant we assume that the fields B, \tilde{B} are concentrated in two disjoin tubes $\{L_1, L_2\}$ with the flows F_1, F_2 . We assume that the linking number of the tubes equals zero. Under this assumption we prove

$$M(B) = \beta(L_1, L_2)F_1^2F_2^2$$

where β is the Sato-Levine invariant (the Vassiliev invariant of order 3 for isotopy class of 2-component links).